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ABSTRACT

In this work we investigate the feasibility and effectiveness
of unsupervised tissue clustering and classification algorithms
for DTI data. Tissue clustering and classification are among
the most challenging tasks in DT image analysis. While clus-
tering separates acquired data into objects, tissue classifica-
tion provides in-depth information about each region of inter-
est.

The unsupervised clustering algorithm utilizes a frame-
work proposed by Hext and Snedecor, where the null hypoth-
esis of diffusion tensors arising from the same distribution is
determined by anF-test. Tissue type is classified according
to one of three possible diffusion models (general anisotropic,
prolate, or oblate), which is determined with a parsimonious
model selection framework. This approach, also adapted from
Snedecor, chooses among different models of diffusion within
a voxel using a series ofF-tests.

Both numerical phantoms and DWI data obtained from
excised rat spinal cord are used to test and validate these tissue
clustering and classification approaches.
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ing, hypothesis testing

1. INTRODUCTION

Diffusion Tensor Magnetic Resonance Imaging[1] (DT-MRI
or MRI) provides noninvasive quantitative measurements of
the apparent diffusion tensor of water molecules in tissue.
In an anistropic medium, the signal attenuation in diffusion-
weighted images (DWI) depends on the underlying tissue struc-
tures. Most work in DTI segmentation is based on apply-
ing thresholding criteria to tensor-derived scalar quantities,
such as the Trace of the diffusion tensor (Tr), the Fractional
Anisotropy (FA), and the Relative Anisitropy (RA). However,
these scalars are generally subject to bias usually due to back-
ground noise [2, 3]. Also, they do embody for all the infor-
mation available in3×3 diffusion tensor. To reliably identify
regions of interest (ROI), we propose using information con-
tained in the entire diffusion tensor to perform clustering. In
this work we propose the use of statistical hypothesis testing

adapted from Hext[4] and Snedecor[5, 1] to perform unsu-
pervised tissue classification. This method uses theF-test for
assessing similarities between tensors in different voxels. To
mitigate the effect of variability between voxels with different
FA, we choose uniform seed voxels that have been preselected
according to their local diffusion properties as determined by
a hierarchical model selection framework, which is also based
on F-tests.

One advantage of using statistical hypothesis testing lies
in performing tests on the entire diffusion tensor, which con-
taines information aboutTr, FA and diffusion orientation. An-
other advantage is that one can assess errors in ROI selection
and choose the confidence levels for each test. Finally, these
tests are rapid and easy to perform voxel-by-voxel, even for
large DTI data sets.

2. THEORY

2.1. Diffusion Tensor Imaging

The relationship between observed echo attenuation [6, 7],
caused by applying diffusion sensitizing gradients along var-
ious directions, and the diffusion tensor,D, can be character-
ized by

S(G) = S(0)e−b:D, (1)

whereS(G) is observed signal,S(0) is a signal in the absence
of the diffusion-weighted gradient,D is a symmetric (3x3)
2nd-order diffusion tensor andb is a matrix computed by:

bij = γ2GiGjδ
2
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δ
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]

, (2)

whereGi is the diffusion gradient applied inith direction with
durationδ, and∆ is the diffusion time.

2.2. Parameter estimation framework

Diffusion tensor estimation is performed using a non-linear
least square minimization method, proposed by Koay et al.[8],
applied to the function Eq. 1. The design matrix,B, consists



of a list of b-matrix elements for a series ofn trials or DWI
acquisitions:
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Below, D̂ is the estimated diffusion tensor for the general
anisotropic model written as a(7 × 1) column vector. Here
we estimate six independent parameters ofD in Eq. 1 and
the log of the signal in the absence of the diffusion-weighted
gradient,log[S(0)]:

D̂ = [Dxx,Dyy,Dzz,Dxy,Dxz,Dyz, log[S(0)]]
′

, (4)

We minimize the Residual Sum of Squares (RSS) with respect
to the 7 free parameters of the diffusion model:

RSS =

n
∑

i=1

(

Si(G) − e
−BiD̂

)2

, (5)

whereSi(G) ande
−BiD̂ are the observed and estimated sig-

nals, respectively,n is the number of data points in each voxel.

3. CLUSTERING BASED ON PARAMETER
DISTRIBUTION OF DIFFUSION TENSORS

Parsimonious model selection methods are used as a pre pro-
cessing for segmenting voxels based on diffusion properties
within the voxels, however these methods do not provide any
information about the homogeneity of the tissue, i.e., whether
diffusion tensors within a given ROI have the same model
type, and if so, whether their parameters are similar to those
of their neighboring voxels. Such information can further im-
prove tissue segmentation.

In order to justify the use of theF-test hypothesis test-
ing framework for tissue segmentation, the assumptions of the
normally distributed residuals and homoscedasticity (i.e., uni-
formity of the variance within an ROI) have to be satisfied. It
has been shown that the residuals are asymptotically normally
distributed atSNR greater than 7 in an experiment otherwise
free of systematic artifacts. However, the variance may notbe
homogeneous among neighboring voxels. To overcome this
problem, we select locally homogeneous regions in the model
map having the same model type as determined by the parsi-
monious model selection method.

The parsimonious model selection framework proposed
previously selects the one of four models that provides the
best fit to the DWI data using the fewest parameters. In this
work we are interested in segmenting white matter regions,
i.e., presumed to have their fractional anisotropy,FA, greater
than 0.5. Thus the hierarchy of models from which we choose

the seed points excludes the isotropic model. Remaining mod-
els describe transverse isotropy (prolate and oblate ellipsoids)
and full anisotropy.

3.1. Test between voxels

Once the diffusion model is chosen in each voxel, we select
the seed region from 6 to 9 neighboring voxels to performt tis-
sue clustering based on the diffusion model type of the seed
voxels. The null hypothesis assumes that the difference be-
tween diffusion tensors form voxels of the same model type
is statistically insignificant. To test this hypothesis, wetake
following steps, adapted from Hext:

1. Combinem sets of acquired signals,SCAS , into an[n ·
m × 1] array, wheren is the number of experimental
data points in each voxel;

2. Combinem sets ofn individually estimated signals,
SCES ([n · m × 1]);

3. Estimate the average diffusion tensor form voxels,
D̂Avg by a non-linear least square minimization method,
applied toRSS (Eq.5), using the combined acquired sig-
nal vector,SCAS , and the augmented[n ·m×7] design
matrix,BC ;

4. Estimate the average signal vector,SAvg, [n · m × 1]

usingSAvg(G) = S(0)e−BCD̂Avg .

5. Apply theF-test of the null hypothesis.

We use Snedecor’sF-test1 to assess the similarity among
variances within the voxels:

F0 =
(RSSAvg − RSSCES)/(fp · (m − 1))

(RSSCES)/(m · (n − fp))
(6)

wherefp = 7 is the number of the free parameters in the gen-
eral anisotropic model,m is a number of voxels withn ex-
perimental data points each;RSSCES andRSSAvg are the
residual sums of squares of the combined estimated signals
and the results from the fit for the estimated average diffusion
tensor,D̂Avg, respectively.

4. METHODS

4.1. Simulations

To evaluate the parsimonious model selection approaches, syn-
thetic phantoms were generated in MATLAB (The MathWorks,
Inc.) by varying the fractional anisotropy,FA, from 0.2 to 1.0
with a step size of 0.1, and signal to noise,SNR, from 5 to
23, for a fixed signal intensity, (I0=1000). The trace ofD,

1A typo appears in ”Statistical Methods” by Snedecor and Cohran[5] in
the formula given on page 344 describing theF-test for comparing two nested
models. The corrected formula is given in Eq. 6 above



Tr, was set to2100e−6 mm2/sec and2400e−6 mm2/sec for
white and gray matter respectively, which are typical values
for living brain tissue[9] . Normally distributed random noise
with σ = 1 and zero mean, was added to the signal inten-
sity and the diffusion weighted images were calculated and
scaled. This model assumes that noise is added to the real
and imaginary channels independently, and that the MR sig-
nal is rectified. Theb-matrix was calculated with the imag-
ing parameters described in the Excised Rat Spinal Cord DTI
Experiments subsection. The hierarchical methods for par-
simonious model selection were applied to the set of 47 re-
constructed diffusion-weighted images with 1 non diffusion
weighted image.

4.2. Excised Rat Spinal Cord DTI Experiments

In addition to simulation, we demonstrate our results on ex-
perimental MRI data obtained from an excised rat spinal cord
fixed with 4% paraformaldehyde solution. DWIs were ob-
tained using a PGSE DWI sequence with pulse durationδ =
2.5 ms, diffusion time∆ = 70 ms, repetition time (TR) = 3500
ms, and echo time (TE) = 14.7 ms. Other imaging param-
eters were: in-plane resolution 200x200µm2, slice thickness
= 2mm, number of averages (NEX): n = 1, bandwidth = 50
kHz. Forty DWIs per slice were acquired during 28 hours
of scanning. Thirty-one of these were attenuated by diffu-
sion gradientsG = (Gx, Gy, Gz) and 9 were not attenuated
(|G| = 0). In each direction approximate b-values was 2000
s/mm2. At each voxel location in the raw image, the appar-
ent diffusion tensor,D, was calculated[1]. Tensor-derived pa-
rameters, such as theTr, FA, principal directions and principal
diffusivities,λ1, λ2, andλ3 were all calculated and passed to
the parsimonious model selection algorithm.

5. RESULTS

Since the residuals from the phantom and the excised rat spinal
cord experiments are asymptotically normally distributed, and
the variance of each measurement is unchanging (homoscedas-
ticity), testing of one model against another, presented below,
is well grounded. The confidence interval for all tests was set
to 95%.

5.1. Simulations

The parsimonious model selection results obtained atSNR=25
andFA=0.6 showed 95% success for the isotropic model (λ1 =
λ2 = λ3), 99% in identifying the general anisotropic model
(λ1 > λ2 > λ3), 90% for the oblate model (λ1 = λ2 > λ3)
, and 93% for the prolate model (λ1 > λ2 = λ3). Within
regions of oblate or prolate symmetry, we created 4 distinct
regions with varying degrees of prolateness and oblateness,
as well as, directions ofεo/p(θ, ϕ) (Eq. 7) whereθ was set

to 10◦, 20◦, 30◦, and 40◦, where the normalized eigenvec-
tor parallel to the axis of symmetry for the oblate or prolate
model is:

εo/p(θ, ϕ) = (sin θ cos ϕ, sin θ sin ϕ, cos θ)
′

. (7)

However, the parsimonious model selection algorithm seg-
ments tissue based only on the diffusion properties within a
voxel, i.e., presence of the transverse symmetry. Thus, for
example, all prolate fibers having different diffusion param-
eters and/or orientation would still be marked as “prolate”,
while the multivariate hypothesis testing based clustering al-
gorithm succesfully separated ROIs with different degreesof
prolateness and oblateness and differentiated between diffu-
sion tensosr with at least a 10◦ directional difference. It also
performed denoising of the data. Overall oblate and prolate
model segmentation improved from 90% to 97% and from
93% to 99%, respectively.

Excised Rat Spinal Cord DTI Experiment

Fig. 1 shows (A) theT2-weighted amplitude image and the
orientationally invariant B)FA and C)Tr maps. By examin-
ing amplitude image and the maps we can only distinguish
white from gray matter groups, athough the white matter it-
self consists of several different fiber compartments.

A)

 

B)

 

C)

Fig. 1. Excised rat spinal cord: A) theT2-weighted amplitude
image; B) the Fractional Anisotropy (FA) map; C) the Trace
(Tr) map.

The parsimonious model selection method consistently
segmented prolate regions in the white matter (Fig. 2A), but
does not reveal different fiber organization patterns within
white matter. The multivariate hypothesis testing based clus-
tering algorithm, however, identified 7 distinct prolate regions
within white matter (Fig. 2B)). The red arrow points to two
non-symmetric regions, which, after closer examination of
the fixed spinal cord, revealed that the fibers in these areas
were compressed during specimen preparation.

6. DISCUSSION AND CONCLUSIONS

The primary goal of this work is to investigate the feasibil-
ity of using a multivariate statistical hypothesis testingframe-
work with DTI data to perform tissue clustering and classifi-
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Fig. 2. Excised rat spinal cord: A) Parsimonious model se-
lection map; B) 7 ROIs represent areas with different fiber
bundles.

cation. The maps produced by the proposed multivariate hy-
pothesis testing framework provide useful information about
the distribution of different fiber types within tissues. Using
numerical and spinal chord phantoms we demonstrated that
the anisotropic regions with subtle differences in diffusion
type (oblate, prolate or full anisotropy) and model parame-
ters (e.g., degree of prolateness or oblateness and orientation
of axis of symmetry) could be resolved. Numerical phantom
results showed the ability to separate tensors with at leasta
10◦ difference in the orientation of their axis of symmetry at
SNR=25 andFA=0.6 or greater. Such results increase our con-
fidence in clustering based upon statistical hypothesis tests.

F-testing for tissue clustering and classification applica-
tions is both efficient and powerful. The current approach
was succesfully applied to MRI microscopy of fixed samples
in which imaging artifacts can be significatly reduced and as-
sumptions of normal residuals and uniform variance for each
voxel within the DWI data can be assured. Thus, when ap-
plied to ex vivo tissue specimens, where background noise
is the primary artifact and other systematic artifacts can be
remedied, this approach should work robustly.

Provided that the conditions for normally distributed resid-
uals and uniform variances for DWIs within each voxel are
met, multivariate hypothesis testing could be used within
vivo data as well. In clinical applications, however, where
other systematic artifacts can corrupt DWI data, this approach
may be problematic. When using DWI data from living tis-
sue, tests for Gaussianity of the distribution of residualsand
a careful assessment of the degree of homoscedasticity must
be performed prior to applying this segmentation approach to
ensure its integrity. Our expectation is that applying model
selection procedures prior to segmentation may improve au-
tomatic region of interest (ROI) delineation and classification
of different tissue types in DT-MRI volume data sets.
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